Lecturer: Narges Peyravi

What is Apache Spark?

Apache Spark is an Open source analytical processing engine for large-scale powerful distributed data

processing and machine learning applications.

Spark was Originally developed at the University of California, Berkeley’s, and later donated to the Apache

Software Foundation.

In February 2014, Spark became a Top-Level Apache Project and has been contributed by thousands of

engineers making Spark one of the most active open-source projects in Apache.

Apache Spark 3.5 is a framework that is supported in Scala, Python, R, and Java.

Features of Apache Spark

*Fast - It provides high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a
qguery optimizer, and a physical execution engine.

*Easy to Use - It facilitates to write the application in Java, Scala, Python, R, and SQL. It also provides more than
80 high-level operators.

*Generality - It provides a collection of libraries including SQL and DataFrames, MLIlib for machine learning,
GraphX, and Spark Streaming.

Lightweight - It is a light unified analytics engine which is used for large scale data processing.

*Runs Everywhere - It can easily run on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud.

Spark Architecture

¢ Spark works in a master-slave architecture where the master is called the “Driver” and slaves are called

“Workers”.

** When you run a Spark application, Spark Driver creates a context that is an entry point to your application,
and all operations (transformations and actions) are executed on worker nodes, and the resources are

managed by Cluster Manager.

Worker Node

Executor Cache

/“
|| Task Task
Driver prugr:m;/ /

(—— Cluster Manager

SparkContext

Worler Node

/

Executor
Cache

|| Task Task

https://sparkbyexamples.com/spark/what-is-apache-spark-driver/

Spark Architecture

** The Spark architecture depends upon two abstractions:
*Resilient Distributed Dataset (RDD)
*Directed Acyclic Graph (DAG)

Resilient Distributed Datasets (RDD):The Resilient Distributed Datasets are the group of data items that can be
stored in-memory on worker nodes.

*Resilient: Restore the data on failure.
Distributed: Data is distributed among different nodes.

eDataset: Group of data.

Directed Acyclic Graph (DAG): Directed Acyclic Graph is a finite direct graph that performs a sequence of
computations on data.

Each node is an RDD partition, and the edge is a transformation on top of data. The graph refers the navigation
whereas directed and acyclic refers to how it is done.

Spark Architecture

Driver Program

s The Driver Program is a process that runs the main() function of the application and creates

the SparkContext object.

¢ The purpose of SparkContext is to coordinate the spark applications, running as independent sets of

processes on a cluster.
s To run on a cluster, the SparkContext connects to a different type of cluster managers and then perform the
following tasks:
*It acquires executors on nodes in the cluster.

*Then, it sends your application code to the executors. Here, the application code can be defined by JAR or

Python files passed to the SparkContext.

*At last, the SparkContext sends tasks to the executors to run.

Spark Architecture

Cluster Manager

*The role of the cluster manager is to allocate resources across applications. The Spark is capable enough of

running on a large number of clusters.
*|t consists of various types of cluster managers such as Hadoop YARN, Apache Mesos and Standalone Scheduler.

*Here, the Standalone Scheduler is a standalone spark cluster manager that facilitates to install Spark on an

empty set of machines.

Worker Node
*The worker node is a slave node.

*Its role is to run the application code in the cluster.

Spark Architecture

Executor

An executor is a process launched for an application on a worker node.

It runs tasks and keeps data in memory or disk storage across them.

It read and write data to the external sources.

Every application contains its executor.

Task

* A unit of work that will be sent to one executor.

Spark Components

The Spark project consists of different types of tightly integrated components. At its core, Spark is a

computational engine that can schedule, distribute and monitor multiple applications.

Spark Streaming

Spark SQL S Spark Mlib machine E'“P}f‘
y e > Graph X Structured data freaming learning grap
Spark SQL : > 2 (graph) real-time processing

MLlib

(machine learning)

Spark Core

Spark Core

Spark Core is the base engine for large-scale parallel and distributed data processing. It is responsible for:

The Spark Core is the heart of Spark and performs the core functionality.
* Memory management and fault recovery
* Scheduling, distributing and monitoring jobs on a cluster

* Interacting with storage systems

« It provides In-Memory computing and referencing datasets in external storage systems.

http://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10/1.0.0

Spark SQL

*The Spark SQL is built on the top of Spark Core. It provides support for structured data.

It allows to query the data via SQL (Structured Query Language) as well as the Apache Hive variant of SQL

called the HQL (Hive Query Language).

It supports JDBC and ODBC connections that establish a relation between Java objects and existing databases,

data warehouses and business intelligence tools.

*It also supports various sources of data like Hive tables, Parquet, and JSON.

Spark Streaming

Spark Streaming supports real time processing of streaming data, such as production web server log files (e.g.

Apache Flume and HDFS/S3), social media like Twitter, and various messaging queues like Kafka.

Spark Streaming receives the input data streams and divides the data into batches. Next, they get processed

by the Spark engine and generate final stream of results in batches, as depicted below.

It accepts data in mini-batches and performs RDD transformations on that data.

Input Data
Stream

Batches of
Input Data

Batches of
Processed Data

MLIib

MLlib is a machine learning library that provides various algorithms designed to scale out on a cluster for

classification, regression, clustering, collaborative filtering, and so on.

Some of these algorithms also work with streaming data, such as linear regression using ordinary least squares

or k-means clustering .

Apache Mahout (a machine learning library for Hadoop) has already turned away from MapReduce and joined

forces on Spark MLlib.

It is nine times faster than the disk-based implementation used by Apache Mahout.

GraphX

The GraphX is a library that is used to manipulate graphs and perform graph-parallel computations.
It facilitates to create a directed graph with arbitrary properties attached to each vertex and edge.

To manipulate graph, it supports various fundamental operators like subgraph, join Vertices, and aggregate

Messages.

What is RDD

Resilient Distributed Datasets (RDD) is a fundamental data structure of Spark.
It is an immutable distributed collection of objects.

Each dataset in RDD is divided into logical partitions, which may be computed on different nodes of the

cluster.

RDDs can contain any type of Python, Java, or Scala objects, including user-defined classes.

An RDD is a read-only, partitioned collection of records.
RDDs can be created through deterministic operations on either data on stable storage or other RDDs.

RDD is a fault-tolerant collection of elements that can be operated on in parallel.

RDD creation

There are two ways to create RDDs:
e Parallelizing an existing data in the driver program.

* Referencing a dataset in an external storage system, such as a shared filesystem, HDFS, HBase, or any data
source offering a Hadoop InputFormat.

sparkContext.parallelize()

sparkContext.parallelize is used to parallelize an existing collection in your driver program. This is a basic method
to create RDD.

//Create RDD from parallelize
val dataSeq = Seq(("Java", 20000), ("Python", 100000), ("Scala", 3000))
val rdd=spark.sparkContext.parallelize(dataSeq)

sparkContext.textFile()

Using textFile() method we can read a text (.txt) file from many sources like HDFS, S#, Azure, local e.t.c into RDD.
//Create RDD from external Data source

val rdd2 = spark.sparkContext.textFile("/path/textFile.txt")

RDD Operations

On Spark RDD, you can perform two kinds of operations.

RDD Transformations
Spark RDD Transformations are lazy operations meaning they don’t execute until you call an action on RDD.

Since RDDs are immutable, When you run a transformation(for example map()), instead of updating a current
RDD, it returns a new RDD.

Some transformations on RDDs are flatMap(), map(), reduceByKey(), filter(), sortByKey() and all these return a
new RDD instead of updating the current.

RDD Actions

RDD Action operation returns the values from an RDD to a driver node.

In other words, any RDD function that returns non RDDJ[T] is considered as an action.
RDD operations trigger the computation and return RDD in a List to the driver program.

Some actions on RDDs are count(), collect(), first(), max(), reduce() and more.

Commonly Used Transformations

map{function) Returns a new RODD by applying the function on each data elemeant

filter{function) Returns a new dataset formed by selecting those elements of the scurce on

which the function returns true

filterByRange{lowsar, upper) Returmns an BRDD with elements in the specified range. upper to lower
flathiap{functicn) Similar to the map function but returns a seguence, instead of a value
reduceBykKey{function. [mum Tasks]) Ageraesgates the wvalues of a key using a function

sroupBykKey({[num Tasks]) Conwverts (KL,W) to (K, <iterable w=)

distimcti[num Tasks]) Eliminates duplicates from an RDD

mapPartitions{function) Similar to map but runs separately on 2each partition of anmn RDD
mapPartitionswWithindex{functicon) Similar to the map partition but also prowvides the function with an iNnteger

wvalue representing the index of the partition

sample(withReplacemeant, fraction, Samplaes a fraction of data using the given random Nnumber generating seeds
seed)

uniord) Returns a new RDD containing all elements and arguments of the source RDD
intersecticon{) Returns a new RDD that contains an intersection of elements in the datasets
Cartesiand) Returns the Cartesian product of all pairs of elemeaents

subtract() Returns a new RDD created by remowing the elemeaents from the scurce RDD

with commaon arguments

join{RODCO [NnumTasks]) Joins two elements of the dataset with common arguments: when invoked on

(A.B) and (A,C). it creates a new RDD, (A, (B.C))

cogroup(RDD.[InumTasks1) Conwverts (A,B) to (A, <iterable B=)

Commonly Used Actions

m

count() Gets the number of data elements in an RDD

collect() Gets all data elements of an RDD as an array

reduce(function) Aggregates data elements into an RDD by taking two arguments and returning one
take(n) Fetches the first nelements of an RDD

foreach(function) Executes the function for each data element of an RDD

first() Retrieves the first data element of an RDD

saveastextfile(path) Writes the content of an RDD to a text file, or a set of text files, in the local system
takeordered(n, Returns the first n elements of an RDD using either the natural order or a custom

[ordering]) comparator

	Slide 1
	Slide 2: What is Apache Spark?
	Slide 3: Features of Apache Spark
	Slide 4: Spark Architecture
	Slide 5: Spark Architecture
	Slide 6: Spark Architecture
	Slide 7: Spark Architecture
	Slide 8
	Slide 9: Spark Components
	Slide 10: Spark Core
	Slide 11: Spark SQL
	Slide 12: Spark Streaming
	Slide 13: MLlib
	Slide 14: GraphX
	Slide 15: What is RDD
	Slide 16: RDD creation
	Slide 17: RDD Operations
	Slide 18:
	Slide 19: Commonly Used Actions

